励志一生网 > 名言警句 > 数学名言小报电子 正文

数学名言小报电子

时间:2025-04-30 16:52:16

一个没有几分诗人气的数学家永远成不了一个完全的数学家,四年级的同学了解哪些数学名言呢?

1、上帝创造了整数,所有其余的数都是人造的。 ——克隆内克

2、数学发明创造的动力不是推理,而是想象力的发挥。——德摩

3、非数学归纳法在数学的研究中,起着不可缺少的作用。 ——舒尔(I.Schur)

4、纯数学这门科学再其现代发展阶段,可以说是人类精神之最具独创性的创造。——怀德海

5、无限!再也没有其他问题如此深刻地打动过人类的心灵。——希尔伯特

6、发现每一个新的群体在形式上都是数学的,因为我们不可能有其他的指导。——达尔文

7、给我五个系数,我讲画出一头大象;给我六个系数,大象将会摇动尾巴。——柯西

8、如果谁不知道正方形的对角线同边是不可通约的量,那他就不值得人的称号。——柏拉图

9、我们能够期待,随着教育与娱乐的发展,将有更多的人欣赏音乐与绘画。但是,能够真正欣赏数学的'人数是很少的。——贝尔斯

10、观察可能导致发现,观察将揭示某种规则、模式或定律。——波利亚

11、多数的数学创造是直觉的结果,对事实多少有点儿直接的知觉或快速的理解,而与任何冗长的或形式的推理过程无关。—— 卢卡斯(William F.Lucas)

12、数学不可比拟的永久性和万能性及他对时间和文化背景的独立行是其本质的直接后果。——埃博

13、我曾听到有人说我是数学的反对者,是数学的敌人,但没有人比我更尊重数学,因为它完成了我不曾得到其成就的业绩。 ――哥德

14、数学的本质在于它的自由。 ――康托尔

15、在数学的领域中,提出问题的艺术比解答问题的艺术更为重要。 ――康托尔

16、数统治着宇宙。 ——毕达哥拉斯

17、数学,科学的女皇;数论,数学的女皇。 ——C·F·高斯

18、上帝创造了整数,所有其余的数都是人造的。 ——L·克隆内克

19、上帝是一位算术家 ——雅克比

20、如果谁不知道正方形的对角线同边是不可通约的量,那他就不值得人的称号。——柏拉图

21、整数的简单构成,若干世纪以来一直是使数学获得新生的源泉。——G·D·伯克霍夫

22、一个数学家越超脱越好。——无名氏

23、数学不可比拟的永久性和万能性及他对时间和文化背景的独立行是其本质的直接后果。——A·埃博

24、发现每一个新的群体在形式上都是数学的,因为我们不可能有其他的指导。——C·G·达尔文

25、宇宙的伟大建筑是现在开始以纯数学家的面目出现了。——J·H·京斯

26、可以数是属统治着整个量的世界,而算数的四则运算则可以看作是数学家的全部装备。——麦克斯韦

27、数论是人类知识最古老的一个分支,然而他的一些最深奥的秘密与其最平凡的真理是密切相连的。——史密斯

28、无限!再也没有其他问题如此深刻地打动过人类的心灵。——D·希尔伯特

29、这是一个可靠的规律,当数学或哲学著作的作者以模糊深奥的话写作时,他是在胡说八道。——A·N·怀德海

30、给我五个系数,我讲画出一头大象;给我六个系数,大象将会摇动尾巴。——A·L·柯西

31、纯数学是魔术家真正的魔杖。——诺瓦列斯

32、这是一个可靠的规律,当数学或哲学著作的作者以模糊深奥的话写作时,他是在胡说八道。 ――A.N.怀特海

数学电子小报图片

数学名言(一)

1、数学是研究抽象结构的理论。——布尔巴基学派

2、数学是符号加逻辑。——罗素

3、非数学归纳法在数学的研究中,起着不可缺少的作用。——舒尔

4、数学是研究现实生活中数量关系与空间形式的数学。——恩格斯

5、二分之一个证明等于0。——高斯

6、数学的本质在于它的自由。――康托尔

7、每一个目标,我都要它停留在我的眼前,从第一到曙光初现开始,一直保留,慢慢展开,直到整个大地光明为止。——牛顿

8、数学是一种理性的精神,使人类的思维得以运用到最完善的程度。——克莱因

9、多数的.数学创造是直觉的结果,对事实多少有点儿直接的知觉或快速的理解,而与任何冗长的或形式的推理过程无关。——卢卡斯(WilliamF.Lucas)

10、数学方法渗透并支配着一切自然科学的理论分支。它愈来愈成为衡量科学成就的主要标志了。——冯纽曼

11、没有任何问题可以像无穷那样深深地触动人的情感,很少有别的观念能像无穷那样激励理智产生富有成果的思想,然而也没有任何其它的概念能像无穷那样需要加以阐明。――希尔伯特

12、数学是各式各样的证明技巧。——维特根斯坦

13、数学的本质在於它的自由。——康扥尔(Cantor)

14、数学支配着宇宙。——毕达哥拉斯

15、数学主要的目标是公众的利益与自然现象的解释。——傅立叶

16、给我五个系数,我讲画出一头大象;给我六个系数,大象将会摇动尾巴。——柯西

17、数学是无穷的科学。——赫尔曼外尔

18、数学对观察自然做出重要的贡献,它解释了规律结构中简单的原始元素,而天体就是用这些原始元素建立起来的。——开普勒

19、天才?请你看看我的臂肘吧。——拉码努扬

数学作文(二)

数学来源于生活,生活中的数学知识比比皆是,我们平时走路、乘车、购物……等,其中都包含着数学问题与知识,只要注意观察就能发现,连航空、航海、航天都与数学有着密切的关系。

数学可以锻炼我们的思维体操,我们不仅能从数学中学到知识,还能从数学中找到一些乐趣。

在我过去的记忆中,发生过有关数学的趣事。有一天在奶奶家,当时有爷爷、奶奶、姐姐与我共四个人在看电视,奶奶到厨房拿来洗好的三个苹果说:“只有这三个,你们一人一个吧。”爷爷说:“那怎么行,叫他俩分,每人一份。”这下我傻眼啦!我说:“少一个怎么分?姐姐说:”我来分。“她拿起刀,把每一个苹果十字切开,切成了12块,三块一份,正好四份,当时我边吃边想,怎么也没想到分苹果还有学问,这件事给我留下深刻的印象。

我学奥数做题时有次遇到了难点,题目是:徐师傅锯木头锯了五次,每段一百二十厘米,问原来这根木头长多少厘米?看题后我想锯五次是五段吗?这样理解对不对?突然想到老师教的画圈法,于是用尺子先画一条直线,用笔在直线上画五个段点,表示锯了五次,一看是六段,用120乘6结果是720厘米,这是十我的心情很轻松自信,对老师教的线段图解法印象深刻,非常高兴。

“免费午餐”的故事,爷爷听人讲,过去有个饭店开业这天,为了吸引顾客,在门口的招牌上写有“免费午餐”四个大字引来很多人围观,前面的人还看见四个大字下面有几行小字,上写着“答题正确免费午餐”,题目是:“饭店来了一群人,一人一碗饭,两人一碗菜,三人一碗汤,一共用了55只碗,饭店来了多少人?”爷爷让我算算饭店来了多少人,我想了很久才想到人数必须被2、3整除,用能被2、3同时整除的数6试算,6人6+3+2=11不行,用12人,24+12+8=22不行,用18人,18+9+6=33也不行,用24人,24+12+8=44不对,用30,30+15+10=55对了。我终于算出来了。饭店来了30人。爷爷高兴的问我:做题时你是怎么想的?我说:求的是人数,那有一半的人呀!所以想到被2、3整除。爷爷说:这是解题的关键被你找到了,加上多次试验做出来的,你可别忘啦!我说分苹果的事我还记住那!

小学趣味数学小知识

阿拉伯数字

在生活中,我们经常会用到0、1、2、3、4、5、6、7、8、9这些数字。那么你知道这些数字是谁发明的吗?

这些数字符号原来是古代印度人发明的,后来传到阿拉伯,又从阿拉伯传到欧洲,欧洲人误以为是阿拉伯人发明的,就把它们叫做"阿拉伯数字",因为流传了许多年,人们叫得顺口,所以至今人们仍然将错就错,把这些古代印度人发明的数字符号叫做阿拉伯数字。

现在,阿拉伯数字已成了全世界通用的数字符。

奇妙的圆形

圆形,是一个看来简单,实际上是很奇妙的圆形。

古代人最早是从太阳,从阴历十五的月亮得到圆的概念的。一万八千年前的山顶洞人曾经在兽牙、砾石和石珠上钻孔,那些孔有的就很圆。

以后到了陶器时代,许多陶器都是圆的。圆的陶器是将泥土放在一个转盘上制成的。

当人们开始纺线,又制出了圆形的石纺缍或陶纺缍。

古代人还发现圆的木头滚着走比较省劲。后来他们在搬运重物的时候,就把几段圆木垫在大树、大石头下面滚着走,这样当然比扛着走省劲得多。

大约在6000年前,美索不达米亚人,做出了世界上第一个轮子--圆的木盘。大约在4000多年前,人们将圆的木盘固定在木架下,这就成了最初的车子。

会作圆,但不一定就懂得圆的性质。古代埃及人就认为:圆,是神赐给人的神圣图形。一直到两千多年前我国的墨子(约公元前468-前376年)才给圆下了一个定义:"一中同长也"。意思是说:圆有一个圆心,圆心到圆周的长都相等。这个定义比希腊数学家欧几里得(约公元前330-前275年)给圆下定义要早100年。

圆周率,也就是圆周与直径的比值,是一个非常奇特的数。

《周髀算经》上说"径一周三",把圆周率看成3,这只是一个近似值。美索不达来亚人在作第一个轮子的时候,也只知道圆周率是3。

魏晋时期的刘徽于公元263年给《九章算术》作注。他发现"径一周三"只是圆内接正六边形周长和直径的比值。他创立了割圆术,认为圆内接正多连形边数无限增加时,周长就越逼近圆周长。他算到圆内接正3072边形的圆周率,π= 3927/1250。刘徽已经把极限的概念运用于解决实际的数学问题之中,这在世界数学史上也是一项重大的成就。

祖冲之(公元429-500年)在前人的计算基础上继续推算,求出圆周率在3.1415926与3.1415927之间,是世界上最早的七位小数精确值,他还用两个分数值来表示圆周率:22/7称为约率,355/113称为密率。

在欧洲,直到1000年后的十六世纪,德国人鄂图(公元1573年)和安托尼兹才得到这个数值。

现在有了电子计算机,圆周率已经算到了小数点后一千万以上了。

九九歌

九九歌就是我们现在使用的乘法口诀。

远在公元前的春秋战国时代,九九歌就已经被人们广泛使用。在当时的许多著作中,都有关于九九歌的记载。最初的九九歌是从"九九八十一"起到"二二如四"止,共36句。因为是从"九九八十一"开始,所以取名九九歌。大约在公元五至十世纪间,九九歌才扩充到"一一如一"。大约在公元十三、十四世纪,九九歌的顺序才变成和现在所用的一样,从"一一如一"起到"九九八十一"止。

现在我国使用的乘法口诀有两种,一种是45句的,通常称为"小九九";还有一种是81句的,通常称为"大九九"。

从一加到一百

七岁时高斯进了 St. Catherine小学。大约在十岁时,老师在算数课上出了一道难题:"把 1到 100的整数写下来,然後把它们加起来!"每当有考试时他们有如下的习惯:第一个做完的就把石板﹝当时通行,写字用﹞面朝下地放在老师的桌子上,第二个做完的就把石板摆在第一张石板上,就这样一个一个落起来。这个难题当然难不倒学过算数级数的人,但这些孩子才刚开始学算数呢!老师心想他可以休息一下了。但他错了,因为还不到几秒钟,高斯已经把石板放在讲桌上了,同时说道:「答案在这儿!」其他的学生把数字一个个加起来,额头都出了汗水,但高斯却静静坐着,对老师投来的,轻蔑的、怀疑的眼光毫不在意。考完後,老师一张张地检查着石板。大部分都做错了,学生就吃了一顿鞭打。最後,高斯的石板被翻了过来,只见上面只有一个数字:5050(用不着说,这是正确的答案。)老师吃了一惊,高斯就解释他如何找到答案:1+100=101,2+99=101,3+98=101,……,49+52=101,50+51=101,一共有50对和为 101的数目,所以答案是 50×101=5050。由此可见高斯找到了算术级数的对称性,然後就像求得一般算术级数合的过程一样,把数目一对对地凑在一起。

数学名人名言:

数学是一种精神,一种理性的精神。正是这种精神,激发、促进、鼓舞并驱使人类的思维得以运用到最完善的程度,亦正是这种精神,试图决定性地影响人类的物质、道德和社会生活;试图回答有关人类自身存在提出的问题;努力去理解和控制自然;尽力去探求和确立已经获得知识的最深刻的和最完美的内涵。——克莱因《西方文化中的数学》

数学是除了语言与音乐之外,人类心灵自由创造力的主要表达方式之一,而且数学是经由理论的建构成为了解宇宙万物的媒介。因此,数学必需保持为知识,技能与文化的主要构成要素,而知识与技能是得传授给下一代,文化则得传承给下一代的。——录自德国数学家HermannWeyl语

数学是科学的皇后,而数论是数学的皇后高斯(Gauss)音乐能激发或抚慰情怀,绘画使人赏心悦目,诗歌能动人心弦,哲学使人获得智慧,科学可改善物质生活,但数学能给予以上的`一切。——克莱因

数学的本质在於它的自由。---康扥尔(Cantor)

在数学的领域中,提出问题的艺术比解答问题的艺术更为重要。康扥尔(Cantor)

没有任何问题可以向无穷那样深深的触动人的情感,很少有别的观念能像无穷那样激励理智产生富有成果的思想,然而也没有任何其他的概念能向无穷那样需要加以阐明。——希尔伯特(Hilbert)

数学是无穷的科学。--赫尔曼外尔

问题是数学的心脏。--P.R.Halmos

只要一门科学分支能提出大量的问题,它就充满着生命力,而问题缺乏则预示着独立发展的终止或衰亡。--Hilbert

数学中的一些美丽定理具有这样的特性:它们极易从事实中归纳出来,但证明却隐藏的极深。---高斯

哲学家也要学数学,因为他必须跳出浩如烟海的万变现象而抓住真正的实质。……又因为这是使灵魂过渡到真理和永存的捷径。---柏拉图

高斯(数学王子)说:“数学是科学之王”

罗素说:“数学是符号加逻辑”

毕达哥拉斯说:“数支配着宇宙”

哈尔莫斯说:“数学是一种别具匠心的艺术”

米斯拉说:“数学是人类的思考中最高的成就”

培根(英国哲学家)说:“数学是打开科学大门的钥匙”

布尔巴基学派(法国数学研究团体)认为:“数学是研究抽象结构的理论”

黑格尔说:“数学是上帝描述自然的符号”

魏尔德(美国数学学会主席)说:“数学是一种会不断进化的文化”

柏拉图说:“数学是一切知识中的最高形式”

考特说:“数学是人类智慧皇冠上最灿烂的明珠”

笛卡儿说:“数学是知识的工具,亦是其它知识工具的泉源。所有研究顺序和度量的科学均和数学有关。”

恩格斯(自然辩证法哲学家)说:“数学是研究现实生活中数量关系和空间形式的数学

克莱因(美国数学家)说:“数学是一种理性的精神,使人类的思维得以运用到最完善的程度”

伽利略说:“给我空间、时间、及对数,我可以创造一个宇宙”“自然界的书是用数学的语言写成的”牛顿说:“没有大胆的猜想,就做不出伟大的发现”,哈尔莫斯说:“数学的创作绝不是单靠推论可以得到的,首先通常是一些模糊的猜测,揣摩着可能的推广,接着下了不十分有把握的结论。然后整理想法,直到看出事实的端倪,往往还要费好大的劲儿,才能将一切付诸逻辑式的证明。这过程并不是一蹴可几的,要经过许多失败、挫折,一再地猜测、揣摹,在试探中白花掉几个月的时间是常有的。”

拉普拉斯说:“在数学中,我们发现真理的主要工具是归纳和模拟”

维特根斯坦说:“数学是各式各样的证明技巧”

华罗庚说:“新的数学方法和概念,常常比解决数学问题本身更重要”

纳皮尔说:“我总是尽我的精力和才能来摆脱那种繁重而单调的计算”

开普勒说:“以我一生最好的时光追寻那个目标……书已经写成了。现代人读或后代读都无关紧要,也许要等一百年才有一个读者”

拿破仑说:“一个国家只有数学蓬勃的发展,才能展现它国立的强大。数学的发展和至善和国家繁荣昌盛密切相关”