励志一生网 > 经典语录 > 等式和方程的丧系语录 正文

等式和方程的丧系语录

时间:2025-05-03 08:48:32

作为教师,我们都有这样的体会:自然界的万事万物,事物息息相关,都是有联系的。知识是人类已经认识的世界,知识与世界“互映”。形象地说,知识也像一张大网,所有的知识都有千丝万缕的关系。每次学习的新知识只是网上的几个“结”,它与原有的知识经验之间有着必然的联系。在教师备课的过程中,需要了解每一个知识点的地位,也就是不仅要知道这些知识的源头在哪里?还要清楚这些知识会流向哪里。特级教师吴汝萍老师在《教育研究与评论》杂志上也有过这么一段观点:“源”,就是知识的源头,这个知识从哪里来,现在处在什么的位置;“流”就是这一知识有哪些应用,将来要“流”向哪里。

众所周知,教师需要一方面对知识的“源”与“流”进行梳理,即所谓的备教材;另一方面,更要清楚在学生脑海中这些知识的“源”与“流”会呈现怎样的精彩,即所谓的备学生。这是每个老师进行课堂教学前需要做的功课。

那么,学生呢?学生在课堂学习前需要做些什么呢?他们是不是也需要进行对知识“源”与“流”进行个性化的解读,猜想与质疑呢?下面笔者就自己这几年的实践研究,做一个简单的阐述:

近三年,我在“协同教育理论”指导下开展“小学数学绿树课堂”的实践与研究,其中让学生在课堂学习之前进行准备学习(后面谓之备学)是一个重点研究课题。

既然大家都认为学生不是如一张白纸来到我们的课堂,学生都是有着丰富的已有经验、个性色彩站立在课堂里的。那么,我认为,不仅教师需要备课,学生也需要备学。在我实验的初期,经常有老师问我一些问题,比如,备学的目的是什么?是不是就是提前学习?备学需要做些什么呢?

新知识是网上的一小部分,那么学生完全有能力找到与新知识有关系的知识经验、生活经验和思维经验,这些都是脑中的已有的信息,完全可以在课前搜集,哪些知识与新知学习是相关的,新知中的哪些问题是感到疑惑的。搜集已知,捕捉问题,看似简单的两个步骤,其实正是学生为新知的学习进行着“网游”,这种主动的行为就是一种“习”,“学而时习之,不亦乐乎“,不仅积极影响着学生的学习状态,而且进一步巩固了以前学过的知识,发展了学生的思维,也为教师的备学生了解学情提供了极大的的支撑。

举一个实例吧!五年级下册第一章节学习《方程》,我这样指导学生进行备学:

1、搜集天平的知识(可以问家长,可以查

2、阅读书P1—2,有哪些知识是你已经学过的?一一列举出来。

3、阅读书本后,你产生了什么问题?一一列举出来。

4、阅读范老师博客上的《关于方程的资料(1)》。

备学中,孩子们的真实思考最可贵,听听他们是怎么说的吧!

1、孩子们认为自己懂的地方有:

陆瑶:方程这一单元,里面有一个等式是我学过的,但是这里面有一个未知数。

天奕:把一个没有余数的算式,加、减、乘、除都可以,把一个数变成“x”,这就是方程。

李好:我发现用x表示一个未知数,是我们低年级下学期学过的知识。(用字母表示数)可那学期学的字母是求不出来的,可这里的字母却是求出来的。

小睿:像2+1=3、3-1=2这样的式子叫等式,其实我们在一年级时就已经认识了等式。

萱萱:我知道有一些数量关系式可以让我们求出未知数:减数+差=被减数、被减数-减数=差、被减数-差=减数、积÷乘数=乘数、乘数×乘数=积、除数×商=被除数、被除数÷除数=商、被除数÷商=除数。

小立:比如8+○=19,那么求○是多少,只需要用19减8,○是11,在这里是一样的,只不过把○换成了x。

我无法想象我独立备课或与其他老师集体备课是否会有这么具体生动的教学资源,反正在我课前浏览的那么多教育网站中,没有搜索到这些鲜活的内容。这些来自孩子真实的“最近学习工作区”的'声音,不正是课堂教学之“源”吗!

2、孩子们认为不懂的地方有:

秦秦:如果x+3<100,那x是多少?

戴戴:方程为什么含有未知数?

小雯:x可以表示未知数,那么abc可以表示未知数吗?

干干:方程一定要有等式才可以成立吗?范老师,我妈妈有时看到我一些难题不会,就写什么x的,我终于知道了方程。

小雨:方程是用来解决什么问题的?面积问题,数量关系……

我很欣赏小雨的问题,这正是知识之“流”呀!因为它道出了学习方程的意义是什么?我们学习它,到底用它来解决哪类问题?小雨的问题,提醒我在教学目标设定中,一定要让孩子们学完这个知识后,拥有这样的判断力,思考力。

清儿:等式和方程有什么不同,那它们又是什么关系呢?

炜炜:不明白等式和方程有什么区别。

不少孩子问这个问题,说明对于式子、等式和方程的逻辑关系,学生需要老师的引导帮助!

晓哲:怎样才能算出未知数?

呵呵,小家伙们总是思维敏捷,总是透过窗户,看到更远的风景。

小楠:方程可以有大于号、小于号吗?

课上交流以后,相信孩子们会有正确的认识。

小叠:有没有乘法方程式?

通过翻阅孩子们的备学,我发现,不仅老师需要知道数学知识的“源”与“流”,学生也有能力发现数学知识的“源”与“流”。在发现的过程中,学生不断思考,回想,建构合理的认知结构,同时思维向青草更青处漫溯。

备学以后的讨论更有意思:

小璜益:方程不是一个完整的等式,因为有一个数是多少还不知道。

萱萱:我爸爸在教我做一些课外题时,他用的就是方程。

小叠:方程里用x来替代数字。

孩子们聊到兴头上的时候,有个孩子问,怎么才能知道方程里的未知数是多少?我说,你们随便考考我,我都知道。

小岩:x+100>120。

小欣:这个不是方程,方程必须是等式,这个不是等式。

小恺:x+110=210。

小欣把110听成了120,就说,x等于90。

孩子们一片疾呼:x等于100呀!!!

还有几个孩子站起来振振有词的解释x等于100的原因。

呵呵,意外的听错数字,却让我看到了孩子有极强的学习能力,还没有教,其实他们已经有了一些经验。这些现象,又将成为下一场备学的起点。

每节课的开始,找到一些结点,让孩子们动起身心,铺一些知识小路,老师顺着孩子的思维去引导他们创造,探究,发现,总结,体会数学的简洁与抽象,发展自己思考的能力,那样的学习交流,是我所追逐的样子。

听听孩子们对备学的感性体会:

小欣:备学就像是吃饭前的开胃菜,帮助我们更好的去吃饭,吸收菜里的营养;备学就像是砍柴前磨了的刀,使砍柴更加轻而易举,更方便;备学就像是活动前的热身,使活动更加安全、快乐。备学给了我们一篇倾诉的天地,备学给了我们一个展示的舞台。我爱备学。

小涵:我觉得备学就像一颗知识的种子,当我们开始新一学期的备学旅途,就是在给这颗种子浇水、施肥,让它快快长大。当我们结束了一学期的备学后,这颗种子就长大了,长成了参天大树,树上的果实非常多,各有千秋。这些果实,就是我们每天记下的备学,备学后的与同伴交流所得的收获,就是我们努力后的回报。

奕奕:对我来说,备学就像是老师的备课,为了明天的课程而做准备,就像海棠花,冬天积蓄力量,到春天抽出枝条,绽放美丽。

备学,点击着孩子数学世界的“源”与“流”,更点击了一份学习数学的快乐与乐趣,孩子们享受备学,享受数学。

1.如果在茫茫人海中遇见你,那么心里的那朵情花将为你盛放。

2.腊月寒风稍家信,叹二老已白双鬓。 只因孝字心头印,立志出人要头地。

3.我的工作压力很大,霸王洗发水都染不回我的秀发,我每天深夜都蹲坐在路边吃烤面筋,心中却毫无波澜,可能真的是是累了吧,我的上司还强迫我跟他啵嘴,还有一大堆金坷垃的业务,我真的不明白我会接手这种不相关的业务,公司一百块钱都没给我,真的是被命运的意大利炮打碎了我的血小板,一炮走红!累了,来b站缓解心情,点个赞吧,让我知道我还是一个自由的男人……不说了,那个偷电动车的男人盯上我了,我得先走了。

4.我有一个睡不醒的.梦,这个梦早在遇见你的那一刻就再也醒不来了。

5.我不喜欢黑夜给我的寂静让我再次沦陷无法自拔

6.不作死不罢休,不撞南墙不回头,我心里有恐惧的味道,却从来不知道回头。

7.学生时代交朋友,脑袋里面只想着玩;生活时候交朋友,脑袋里面只想着钱。

8.加油,你一定能遇到一个不需要说话就能理解你的人,加油吧加油做梦吧

9.一个清醒的人,总是在旅途中孤独的欣赏风景。

10.我冷漠,我渣,我幼稚,可是你们谁深入过我的内心,你问我我原谅你了吗,我为什么要怪你,我们很熟吗,是的很熟青梅竹马的关系,可是我把内心交你你了,你呢深深插了一刀,自此以后我不在表露内心 甘愿当个演员

11.从来,能放倒自己的,就只有朋友。或者朋友在场,不怕醉,醉不怕。毫无意义的添加好友,当然是直言相告,不加喽,我不爱上微信。

12.最美的爱情一定是门当户对——三观大同,精神相似

13.渐行渐远可能注定就是为了转角遇到爱做铺垫吧!

14.我的大学总该留一点什么美好的回忆,我想这个美好的回忆就是你。

15.一切都是为她,余生却不是她!

16.屋内灯影摇晃,屋外百鬼夜行; 执一盏还魂灯,穿行于幽暗阴冷的黄泉地府; 吹一支枯骨笛,坠落在嗜血诛心的人情往事。 在旧时此岸苦等那个在彼岸种满花的人, 此生若不能相见,但求相忘。

先前认真阅读了这一单元的教材,发现与老教材有较大的变化。又认真阅读了备课手册上侯正海老师的文章《初步体会方程的思想——“方程”教学建议》。于是对方程教材的编排体系有了大致的了解。

昨天让学生预习:数学教材1到2页,并且完成《补充习题》第一页。预习的好处显而易见,我发现:学生对于列方程问题不大(只是少数学生在列方程时写单位),问题大量地出在对“等式”“方程”“式子”的概念的理解和区分上。所以,今天这堂课的难点就是让学生深刻理解和熟悉“等式”和“方程”的概念及其联系和区别。

教学过程简录:口算;教学例1,理解等式;教学例2,理解等式与不等式,把等式分类,分成不含未知数的等式和含有未知数的等式,揭示方程的概念,解释50+50=100,X+50〈200,X+8不是方程的原因;订正〈补充练习〉第一题;揭示等式和方程的区别和联系——等式包括方程,方程是一类特殊的`等式;让学生做“试一试”,比较根据第二张图列的方程12+X=20,一位学生补充了20-X=12,我补充了20-12=X,先确定这三个等式都是方程,但第三个方程一般是不列的,因为根据20-12可以直接得出答案,它就相当于算术方法解题了。我强调:看完图,顺向思维,直接得到的方程,一般是最好的——点到位止,我知道学生对于我的话不一定理解的,就给予一定的暗示和渗透吧。完成“练一练”,重点是第一题(我让学生写出来的)。

反思:由于难点吃透,学生对于方程的意义已经掌握了——做到能背能举例能比较能说明,但在“练一练”的回答上我有疑惑。哪些是等式,哪些是方程。我估计教材的意图是指哪些是不包括方程的等式,哪些是方程,我也是按这样的要求让学生写的,但我还是让学生说说方程全部是等式。教学后,总感别扭。“哪些是等式,哪些是方程”的问法是二分法,所以我才让学生写等式时不写方程。如果这样要求,哪些是等式?再把等式中的方程找出来。这样要求,可能更加清楚,不会让我疑惑了。