1、今天的中国社会存在不流氓不成功的问题,如果不这么干就会在竞争里处于下风,面对文明的道路你会有负担,对手作恶,你不作恶会受损害,对手盗版,你不盗版会有损失。但是阳光做事,坚守道德底线,才代表了未来的文明和技术的力量。
2、其实我是越来越感觉到做成一件事情,已经不只是要中庸平衡了,而是要精神分裂。要短视,也要远见;要勇敢,也要保守;要敏感,也要钝感。
3、在一个看似很不靠谱的环境下工作,才有挑战,才有你施展拳脚的机会。如果你去一个别人什么都会的地方,要你干什么呢?要去把一些不靠谱的事,公司做不到的'事情给做成,这样才变得更加有价值。
4、老板让你做一个什么不知道的事,或者是没有接触过,或者是说资源不足的事,怎么办呢?其实很简单,就是尽你所能,想清楚目标,做到最好。扎进去,自己接受挑战的过程,就是一个快速成长的过程。
5、责难人的时候是一时情绪,但当别人开始道歉的时候我开始不安。是否这个责难太重了?是否自己也落入到“以暴制暴”的境地中去了?若有什么错误我会加倍补偿。找回那个温和从容的自己吧,也祝福每个善良的人都好。
6、有一本书叫''秘密'',有一句话叫做''心想事成'',都在说这个道理。当你相信的时候,就会有力量来冲破阻力。自信不一定能成,不自信一定不能成。
1、从小到大,大家受的教育都在教一些“附加价值”。所有的技术、知识,都是附加在本体上的好东西,本体得到许许多多有价值的附加品,但问题是,“本体是什么?”已经无人讨论。
2、一个输出,一个输入,创意必须有来源,这来源是自己心中的积累,心所看到、所感受到的一切。
3、怎样从最灰暗的人生中走出来,就需要坚持,坚持的时候要有信心,事情会越来越好。
4、创意的原始能量不是被培养出来的一个特质,而是等待被发掘的本能,等待被揭露的能量。
5、创意本来就是每一个人的天赋,本来每一个人都有无限的天赋,只是我们自己用不同方式把它遮蔽住了。
6、我想聆听这个词,不止是耳朵,我们平常的感受,我们生活中,哪怕去餐厅吃饭,在观察别人,对创意都是有用的。
7、一个人能不能积累智慧,主要是看他懂不懂得“如何看”这个世界,如何看自己的动机,如何看自己的习性,如何看自己的生命经验。眼睛只是感官。到底看到什么,看到多少,是心在决定。
8、老在想到自己,反而没有创意,你如果能够真的开放你的心,关心别人,讲的时候可能有点肉麻,但是你在关心别人的时候,这个时候反而创意会更大,而且是更有意义的。
9、语言就是一个文化最外在的表达,最重要的是,如果你能够理解文化的内涵的话,其实那个语言才是有意义的,在创意上更容易运用的。
10、什么是“创意模式”?就是活在一种状态里,让人生中的任何遭遇、任何经验、任何情绪、任何感受,都成为创意的可能材料,而在世间任何事物的运行,都可能隐含着创意的秘密。
11、观众没有义务知道自己需要什么。话剧本身具有引导的`功能,帮助观众提高审美品位,提供思考的空间。认真地制作一部好话剧,观众喜欢看,这才是正确的顺序,而并非观众喜欢什么我们再去做什么。
12、学会看自己的动机是最快的积累智慧的方式,像火箭一样,可以快速培养自我反省的能力,看到行为背后的理由。看到之后,立即得到更宽广的视野,更容易处理眼前的事。
13、我觉得讲到语言的创意,最有表达力的语言就是真诚的语言。
14、我们其实大半辈子都是在用既有的方式看世界。这个方式是日积月累而成的,久而久之,事情的原貌渐渐离我们越来越远,最后,我们甚至可能不认识它了。
前面的十二场演讲中,嘉宾有讲技术、有讲产品,我希望给大家的分享一些不同的内容,以及自己独有的视角。今天大家都提到了AlphaGo,作为引爆人工智能的开端,深度学习在其中承担了最重要的责任。
今天当大家开始畅想的时候,有可能认为人工智能未来真的会取代人。那么我希望今天的分享更多地能够知道人工智能在今天能做什么?不能做什么?未来终极的理想又是什么?
AlphaGo之后,我们看到最重要的突破领域是在语音和图像领域,在文字领域的进展很缓慢。今天我们在机器翻译方面取得了一些突破,但是问答和对语义的理解是不够的。回到图灵测试,上个世纪五十年代图灵提出了问答机器推想这样一个概念,今天我们直观感受是语音图像进步很快,但是自然语言的处理其实是比较慢的。
抛开技术,以一个产品经理的身份来看,人工智能有三个产品方向,一是识别——语音识别、图像识别、视频识别;二是图像——我们去生产图像,生成识别;三是创造。大家提到了人工智能进步的层次,我想换一个方式描述——工程师在人工智能时代会处于越来越重要的位置。
我们开始提到传统的方法是把规则交给机器,随着统计系统的发展,包括深度学习,我们开始更容易地将答案交给机器。,在数据的积累下我们就可以让机器变得更加聪明。这里面更前沿的方式是将目标交给机器,AlphaGo融合了几套算法,但是我和他们工程师沟通的时候,这样的把目标交给机器的强化学习,还并不成熟,也就是说如果没有之前三千万局人机对战的棋谱的话,AlphaGo没能够做到只通过强化学习来战胜人类,这是技术层面需要往下突破的重点。如果将目标交给机器,机器能够做自我学习,这方面有新的突破,那我们离新的人工智能时代就更近了。
今年六月份,我去了英国伦敦,和DeepMind公司的工程师做了交流,我特别好奇的事情就是下棋的第四局机器输掉了,发生了什么事情?他们说不是程序有BUG,就是深度学习本身有瓶颈,围棋比赛是三月份,我是在六月份去的伦敦,已经过了三个月,三个月的时间,这个问题依然没有解决。但是我离开以后一个星期,他们的程序能够正确面对之前的第四局棋谱,我问他是否这个BUG修好了,工程师说没有,只是代表第四局那个特定问题,正好机器可以解决。但是我们依然不知道再什么情况下, AlphaGo会继续出错。所以深度学习这样一个体系其实还是有瓶颈所在的。
所以在今天我更多想谈的是以深度学习为代表的今天的'人工智能技术,还有哪些不靠谱的地方?在产品上不适用之处有哪些?
第一个问题,语音识别靠谱吗?在百度、腾讯,都提到了语音识别的能力,今天我给大家的演示也用到了语音识别,这是搜狗自己的技术。在安静的环境里面我们的识别准确度已经到了95%,甚至97%,但是一旦有噪音,准确率迅速下降。当噪音还只是汽车的引擎噪音、风的噪音时,我们把噪音当成原始数据进入监督学习系统里去,把这种噪音变成机器见过的问题之一。但是事实上我们见到更多的情况,如果同时两个人说话会怎样?在今天的学术界依然无解。
今年六月份,我问学术界的人,人和机器在语音识别上的区别,究竟怎么破解?我们用机器的时候,采用立体声的方式做定向的识别,也就是说我们做一个麦克风矩阵,通过立体的方式知道其中一个人在说话,把另外一个人说话去掉,但人本身是这样干的吗?如果把一只耳朵堵上,我是否没办法分离出谁在说话?或者把两个说话的声音录在一个单声道里面,人可以识别吗?人当然是可以的,所以人的方法和机器不一样。人怎么识别?因为人的音色不一样,还是因为两个人的一个声音大一个声音小,还是因为他们不同的语音,博士说但凡同时两个人说话的时候,只要能够找到差别,人就能够把其中的一个声音识别出来,所以人在和机器处理过程当中有巨大的不同。语音识别最成熟的领域其实还是和人有很大的区别。
另外一件事情是语义靠谱吗?对语言的理解,谷歌在之前是用知识图谱的方法解决,现在遇到了瓶颈,也是今年六月,我在一个实验室看到最先进的人机对话系统,这个系统可以帮你订餐订酒店,对话过程当中机器的表现非常惊艳,我们上去试,有一个环节,机器问你:“你是需要停车位还是不要停车位?”这个时候我们回答要或者不要都没问题,如果回答“我没车”,大家知道机器会怎么样吗?他们完全不理解我没车代表着我不需要停车位,因为今天的机器,在自然语言概念的理解方面,还是远远不够的。所以自然语言处理是可以做的,但是语义理解到现在还是一个不靠谱的阶段。谷歌也在今年发布了一套对于自然语言能够做句子分析的引擎,把主语、谓语、宾语提出来,但是准确度只有90%,提不上去了,因为这个时候光靠统计靠语法已经不能支撑,往下是需要对句子当中的具体概念有理解才能消除歧义。我们知道不能把马路放在冰箱上面,这对于人来讲非常好理解,但是对计算机的挑战非常大,这是深度学习人工智能还不够的地方。
很敏感的问题,无人驾驶靠谱吗?今天百度在大会上也提出了发布无人驾驶汽车,但是从我的了解,如果以今天人类的技术,我们确实再见过的场景和封闭场景中都可以使用。但是对于真正开放的环境,不只跑在高速上的汽车,以现在人类的技术是不安全的,因为这个场景只要没见过,可能会犯严重的错误,就像AlphaGo下棋一样会突然发疯,所以作为辅助驾驶是可以的,无人驾驶在真正的技术突破以前还做不到。今天的深度学习缺乏推理,缺乏对符号的理解,如果没有符号,对自然语言的理解就会成为瓶颈。
即便是这样,我们也提到了(人工智能)能够取代一些行业,比如说棋手、医生、司机,机器在里面都可以做很好的辅助,但是对于大家没见过的创造性的事情,比如规划、科研,其实对于机器来说还很难,今天在媒体上机器自动写文章、自动画图,在科研层面展示出了一些魔力,但是还没有到可以取代人的阶段,所以在这里面我先把大家对人工智能预期降低下来。
有人在问,(人工智能)是否会出现第三次退潮,前两次我们都认为人工智能到来了,但是这次可能会比之前好,之前的人工智能两次退潮前,我们问一个老师,说你是研究人工智能的吗?这是骂他的话。因为(大家认为)人工智能不靠谱,这次是(人工智能)第一次真正进入到了使用,切实在语言处理、声音处理、图象处理,和在一些高维数据空间上能够比人做的更好。所以这次的区别就是大量资金、资本投入到了人工智能。也有大量的研究人员在毕业以后从事人工智能工作,这是和之前不一样的。所以一方面我们开始使用这项技术,另外一方面我们开始期待不断产生新的突破。
我个人对这次人工智能的浪潮是乐观的,但是我也很紧张,也许我们自己做的搜索引擎就是会被颠覆的一部分。
在这里面我们开始畅想未来的路在什么地方,从我自己的描述来看,搜索的未来就是人工智能时代的皇冠,为什么这么说,搜索的未来是什么,人工智能的未来又是什么,为什么是皇冠?
简单来讲,我认为搜索的未来就是问答机器人。因为我们习惯了一件事情:做搜索的时候我们先输入关键词,然后搜索给你十条结果,或者叫十条链接。但是这真是最好的方法吗?肯定是不够的。我们也会提到是否我们用个性化的方法能够使得搜索的结果更准,但是其实个性化能够提供的信息非常的有限。真正能够使得这个系统变得有用的办法是用问句。以前不用问句的原因是因为机器听不懂你在说什么,真正到了问句以后,机器会从给你十条链接,变成给你一个答案,就会好很多。如果你去问机器四个字,“乌镇大会”,机器不可能给你想要的内容,最多把新闻,乌镇的百科或者是官网介绍给你,只有你问乌镇大会哪天开,这个时候机器才能理解你要什么,才有机会给你最好的答案,我相信随着技术的突破,搜索引擎会自然而然演化成为问答引擎。
很多公司都在做这件事,苹果、微软、亚马逊、谷歌。这里面起步最早做对话系统的是苹果的Siri。但是这个系统并不成功,在中国用的人很少。为什么?因为现在技术没有到来,对于自然语言的处理能力、自然语言的理解能力非常有限。那么为什么苹果这样一个追求极致的公司,会把这个系统发布出来呢?一种可能性是苹果对技术了解不够;另一种可能性是我认为这是乔布斯的一个遗愿。我们知道发布iPhone手机的时候,乔布斯病重,只能躺在病床上看发布会,发布会完成之后,他很快就离开人世了,所以Siri就像一个早产的婴儿,在iPhone4s里面发布出来,所以我认为这样的系统代表着人类终极人机交互的畅想。
事实上在大量的文学作品、科幻电影里面,都会提到问答机器人,不管是《星球大战》、《超能陆战队》,还是《星际穿越》都提到了。阿西莫夫的短篇小说《最后的问题》,描绘就是人类造了一个机器,把所有的资源都用了上去。这个机器可以回答其他任何问题,却有一个问题回答不了,就是“宇宙是怎么诞生的”,这是文学作品对问答机器的思考。
除了搜索引擎做问答以外,咱们知道在中国搜狗输入法在移动端拥有三亿用户,输入法的未来是什么呢?和自动问答有关系,大家一起来看一个视频。
之前我们讨论输入法的时候很多朋友和我说语音是最重要的,搜狗有完整的语音识别技术和语音合成技术,但是在我内心,这个远不是输入法的极致。输入法真正的极致是能够开始寻找信息,帮你思。刚才给大家演示的是搜狗输入法的分享的能力,真正的回答能力可以在后面给大家做一个新的演示。
在我们讨论问答技术和讨论人机对话的时候,输入法也许是最好的一个切入场景。输入法作为一个人的分身,更容易帮助你建立思考。输入法也会从一个拼音工具走向一个对话和问答系统。
搜狗有两个核心产品,一个是输入法一个是搜索,一个是搜索信息一个是表达信息。随着AI技术的发展,我们能更好地解放人的思考。我们有一个理念,包括两件事情:一个是做自然的交互,不只是语音,还包括语言;另外就是做知识的计算,能让机器开始逐步建立推理的能力。搜狗输入法在中国拥有最大的语言数据处理积累,我们有机会在这个领域取得突破。
这是我今天的分享,谢谢大家!