励志一生网 > 经典语录 > 全等三角形经典语录 正文

全等三角形经典语录

时间:2025-05-02 01:48:38

教学目标

1、知识目标:

(1)熟记角边角公理、角角边推论的内容;

(2)能应用角边角公理及其推论证明两个三角形全等。

2、能力目标:

(1)通过“角边角”公理及其推论的运用,提高学生的逻辑思维能力;

(2)通过观察几何图形,培养学生的识图能力。

3、情感目标:

(1)通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯 ;

(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。

教学重点:学会运用角边角公理及其推论证明两个三角形全等。

教学难点:sas公理、asa公理和aas推论的综合运用。

教学用具:直尺、微机

教学方法:探究类比法

教学过程

1、新课引入

投影显示

这样几个问题让学生议论后,他们的答案或许只是一种感觉“行或不行”。于是教师要引导学生,抓住问题的本质:“分别带去了三角形的几个元素?”学生通过观察比较就会容易地得出答案 。

2、公理的获得

问:恢复后的三角形和原三角形全等,那全等的条件是不是就是带去的元素呢?

让学生粗略地概括出角边角的公理。然后和学生一起做实验,根据三角形全等定义对公理进行验证。

公理:有两角和它们的'夹边对应相等的两个三角形全等。

应用格式:

(略)

强调:

(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)

所以找条件归结成两句话:已知中找,图形中看。

(3)、公理与前面公理1的区别与联系。

以上几点可运用类比公理1的模式进行学习

3、推论的获得

改变公理2的条件:有两角和其中一角的对边对应相等这样两个三角形是否全等呢?

学生分析讨论,教师巡视,适当参与讨论。

4、公理的应用

(1)讲解例1。学生分析完成,教师注重完成后的总结。

一、教材分析

本节课的教学内容是人教版数学八年级上册第十一章 《全等三角形》的第一节.这是全章的开篇,也是全等条件的基础.它是继线段、角、相交线与平行线及三角形有关知识之后出现的.通过本节的学习,可以丰富和加深学生对已学图形的认识,同时为学习其他图形知识打好基础,具有承上启下的作用.

教材根据初中学生的认知规律和特点,采用由浅入深、由易到难、抓联系、促迁移的方法.通过生活中的实例创设情景,形成概念,再通过平移、翻折、旋转说明变换前后的两个三角形全等,进而得出全等三角形的相关概念及其性质.

二、教学目标分析

知识与技能

1.了解全等三角形的概念,通过动手操作,体会平移、翻折、旋转是考察两三角形全等的主要方法.

2.能准确确定全等三角形的对应元素.

3.掌握全等三角形的性质.

过程与方法

1.通过找出全等三角形的对应元素,培养学生的识图能力.

2.能利用全等三角形的概念、性质解决简单的数学问题.

情感、态度与价值观

通过构建和谐的课堂教学氛围,激发学生的学习兴趣,调动学生的学习积极性,使学生勇于提出问题,乐于探索问题,同时注重培养学生善于合作交流的良好情感和积极向上的学习态度.

三、教学重点、难点

重点:全等三角形的概念、性质及对应元素的确定.

难点:全等三角形对应元素的确定.

四、学情分析

学生在七年级时已经学过线段、角、相交线与平行线及三角形的有关知识,并学习了一些简单的`说理,已初步具有对简单图形的分析和辨识能力,但八年级的学生仍处于以形象思维为主要思维形式的时期.为了发展学生的空间观念,培养学生的抽象思维能力,本节课将充分利用动画演示,来揭示图形的平移、翻折和旋转等变换过程,以便让学生在观察、分析中获得大量的感性认识,进而达到对全等三角形的理性认识.

五、教法与学法

本节课坚持“教与学、知识与能力的辩证统一”和“人人都能获得必需的数学”的原则,博采启发教学法、引探教学法、讲授教学法等诸多方法之长,借助多媒体手段引导学生观察、猜想和探究,促进学生自主学习,努力做到教与学的最优组合.

六、教学教程

Ⅰ.课题引入

1.电脑显示

问题:各组图形的形状与大小有什么特点?

一般学生都能发现这两个图形是完全重合的。

归纳:能够完全重合的两个图形叫做全等形。

2.学生动手操作

⑴在纸板上任意画一个三角形ABC,并剪下,然后说出三角形的三个角、三条边和每个角的对边、每个边的对角。

⑵问题:如何在另一张纸板再剪一个三角形DEF,使它与△ABC全等?

(学生分组讨论、提出方法、动手操作)

3.板书课题:全等三角形

定义:能够完全重合的两个三角形叫做全等三角形

“全等”用“≌”表示,读着“全等于”

如图中的两个三角形全等,记作:△ABC≌△DEF

Ⅱ.全等三角形中的对应元素

1. 问题:你手中的两个三角形是全等的,但是如果任意摆放能重合吗?该怎样做它们才能重合呢?

2.学生讨论、交流、归纳得出:

⑴.两个全等三角形任意摆放时,并不一定能完全重合,只有当把相同的角重合到一起(或相同的边重合到一起)时它们才能完全重合。这时我们把重合在一起的顶点、角、边分别称为对应顶点、对应角、对应边。

⑵.表示两个全等三角形时,通常把表示对应顶点字母写在对应的位置上,这样便于确定两个三角形的对应关系。

Ⅲ. 全等三角形的性质

1.观察与思考:

寻找甲图中两三角形的对应元素,它们的对应边

有什么关系?对应角呢?

(引导学生从全等三角形可以完全重合出发找等量关系)

全等三角形的性质:

全等三角形的对应边相等.

全等三角形的对应角相等.

2.用几何语言表示全等三角形的性质

如图:∵ABC≌ DEF

∴AB=DE,AC=DF,BC=EF

(全等三角形对应边相等)

∠A=∠D,∠B=∠E,∠C=∠F

(全等三角形对应角相等)

Ⅳ.探求全等三角形对应元素的找法

1.动画(几何画板)演示

(1).图中的各对三角形是全等三角形,怎样改变其中一个三角形的位置,使它能与另一个三角形完全重合?

归纳:两个全等的三角形经过一定的转换可以重合.一般是平移、翻折、旋转的方法.

(2).说出每个图中各对全等三角形的对应边、对应角

归纳:从运动的角度可以很轻松地解决找对应元素的问题.可见图形转换的奇妙.

3. 归纳:找对应元素的常用方法有两种:

(1)从运动角度看

a.翻折法:一个三角形沿某条直线翻折与另一个三角形重合,从而发现对应元素.

b.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素.

c.平移法:沿某一方向推移使两三角形重合来找对应元素.

(2)根据位置元素来推理

a.有公共边的,公共边是对应边;

b.有公共角的,公共角是对应角;

c.有对顶角的,对顶角是对应角;

d.两个全等三角形最大的边是对应边,最小的边也是对应边;

e.两个全等三角形最大的角是对应角,最小的角也是对应角;

Ⅴ.课堂练习

练习1.△ABD≌△ACE,若∠B=25°, BD=6㎝,AD=4㎝,

你能得出△ACE中哪些角的大小,哪些边的长度吗?为什么 ?

练习2.△ABC≌△FED

⑴写出图中相等的线段,相等的角;

⑵图中线段除相等外,还有什么关系吗?请与同伴交

流并写出来.

Ⅵ.小结

1.这节课你学会了什么?有哪些收获?有什么感受?

2.通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,并且利用一些方法可以找到两个全等三角形的对应元素.这也是这节课大家要重点掌握的.

Ⅶ.作业

课本第92页1、2、3题

教学目标

1、知识目标:

(1)熟记边角边公理的内容;

(2)能应用边角边公理证明两个三角形全等。

2、能力目标:

(1) 通过“边角边”公理的运用,提高学生的逻辑思维能力;

(2) 通过观察几何图形,培养学生的识图能力。

3、情感目标:

(1) 通过几何证明的教学,使学生养成尊重客观事实和形成质疑的.习惯;

(2) 通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧。

教学重点:学会运用公理证明两个三角形全等。

教学难点:在较复杂的图形中,找出证明两个三角形全等的条件。

教学用具:直尺、微机

教学方法:自学辅导式

教学过程

1、公理的发现

(1)画图:(投影显示)

教师点拨,学生边学边画图。

(2)实验

让学生把所画的 剪下,放在原三角形上,发现什么情况?(两个三角形重合)

这里一定要让学生动手操作。

(3)公理

启发学生发现、总结边角边公理:有两边和它们的夹角对应相等的两个三角形全等(简写成“边角边”或“SAS”)

作用:是证明两个三角形全等的依据之一。

应用格式:

强调:

1、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

2、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边,公共角、对顶角、邻补角、外角、平角等)所以找条件归结成两句话:已知中找,图形中看。

3、平面几何中常要证明角相等和线段相等,其证明常用方法:

证角相等――对顶角相等;同角(或等角)的余角(或补角)相等;两直线平行,同位角相等,内错角相等;角平分线定义;等式性质;全等三角形的对应角相等地。

证线段相等的方法――中点定义;全等三角形的对应边相等;等式性质。

2、公理的应用

(1)讲解例1。学生分析完成,教师注重完成后的总结。

分析:(设问程序)

“SAS”的三个条件是什么?

已知条件给出了几个?

由图形可以得到几个条件?

解:(略)

(2)讲解例2

投影例2:

例2如图2,AE=CF,AD∥BC,AD=CB,

求证:

学生思考、分析,适当点拨,找学生代表口述证明思路让学生在练习本上定出证明,一名学生板书。教师强调证明格式:用大括号写出公理的三个条件,最后写出结论。

(3)讲解例3(投影)

证明:(略)

学生分析思路,写出证明过程。

(投影展示学生的作业,教师点评)

(4)讲解例4(投影)

证明:(略)

学生口述过程。投影展示证明过程。

教师强调证明线段相等的几种常见方法。

(5)讲解例5(投影)

证明:(略)

学生思考、分析、讨论,教师巡视,适当参与讨论。

师生共同讨论后,让学生口述证明思路。

教师强调解题格式:在“证明”二字的后面,先将所作的辅助线写出,再证明。

3、课堂小结:

(1)判定三角形全等的方法:SAS

(2)公理应用的书写格式

(3)证明线段、角相等常见的方法有哪些?

让学生自由表述,其它学生补充,自己将知识系统化,以自己的方式进行建构。

6、布置作业

a书面作业P56#6、7

b上交作业P57B组1

思考题:

板书设计

探究活动